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Let T~ be a Ibrwarding tree of degree k where each vertex other than the origin 
has k children and one parent and the origin has k children but no parent 
(k>~2). Define G to be the graph obtained by adding to T~ nearest neighbor 
bonds connecting the vertices which are in the same generation. G is regarded 
as a discretization of the hyperbolic plane H'- in the same sense that Z a is a 
discretization of R a. Independent percolation on G has been proved to have 
multiple phase transitions. We prove that the percolation probability (l(p) 
is continuous on [0.1 ] as a function ofp. 
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1. I N T R O D U C T I O N  

Let T k be a forwarding tree of degree k, where each vertex other than the 
origin has k children and one parent and the origin has k children but no 
parent (k 1> 2). Define G to be the graph obtained by adding to T k nearest 
neighbor bonds connecting the vertices which are in the same generation 
(see Fig. 1). Independent percolation on the hyperbolic graph G was first 
studied by Benjamini and Schramm. (2~ The name hyperbolic graph comes 
from the fact that G can be regarded as a discretization of the hyperbolic 
p l a n e  H 2. It was proved in ref. 2 that for independent percolation on G 
there exists no, infinitely many, or a unique infinite clusters, respectively 
when the p~rameter p is small, intermediate, or close to 1 (see also ref. 7 
for results of Ising/Potts models on G). In order to make our statement 
precise, we first introduce a few notations. Independently declare each site 
of G to be open with probability p and closed with probability 1 - p .  
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Fig. 1. G is obtained by adding T~ horizontal nearest neighbor bonds connecting equal- 
generation sites of T3. 

Write Pp for the resulting probability measure and Ep the expectation. For  
any set of sites A = G and any site x r A denote by x ~ A the event that 
there exists a sequence of distinct sites Yo, Y, ..... y ,  such that Yo = x and 
y,  ~ A, and for any 1 <~ i ~< n, Yi- i  and y, are nearest neighbors and ),~ is 
open. Note that for convenience Yo is not required to be open (but y ,  is). 
Denote by o ~ ~ the event that the above-defined sequence is infinite with 
Yo = o, the origin. Define 

O(p) = Pp(o  ~ oo ) 

and 

p, .=inf{p>O: 0(p) >0}  

Let aB,, be the set of sites in the nth generation of o (so lOB,,[--k") and 
let B , =  U~.=o 0Bk, where OBo= {o}. For  any site x e G ,  denote by x + B ,  
the shift of B,  by x, and by x + OB,, the shift of OB,, by x, which represents 
the set of sites in the nth generation of x. When it will not cause confusion, 
we will also use B, to denote the set of bonds which have both end points 
in B,. Write x + G for the shift of G by x, which represents all of the des- 
cendants of x. Now, x + G is isomorphic to G. 

For p<p, . ,  0 ( p ) = 0  and hence it is a continuous function o fp .  For 
p >1 p,., O(p) is continuous from the right by a simple argument of Russo  ~6) 

(see also ref. 4, p. 118). Russo's argument is as follows. O(p) is the limit of 
the decreasing sequence PI,(o*--~OB,,) as n ~ ~ .  Now, P,,(o*--~OB,) is a 
continuous function of p since the event o ~ 0 B , ,  depends only on the 
status of the finitely many sites in B,,. So O(p) is upper semicontinuous, 
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hence it is continuous from the right since it is a nondecreasing function 
of p. For continuity from the left, it was proved by van den Berg and 
Keane ~3) (see also ref. 4, p. 119) that i f p  is strictly above p,. and if the 
infinite cluster is unique, then O(p) is continuous from the left. However, 
this method does not work if p is in the region where there are infinitely 
many infinite clusters or i fp  = p,.. In this note we use an argument similar 
to that of Barsky et al. ~ and that of Pemantle tS) to prove that for any 
p>~p,., O(p) is continuous from the left. We therefore have the following 
theorem. 

T h e o r e m .  For independent percolation on the hyperbolic graph G, 
O(p) is a continuous function o f p  on [0, 1]. In particular, O(p,.)=O. 

For any site x e G  write 0 " ( p ) = P p ( x ~  or). For  different sites x 
and y, 0"(p) and O."(p) may be different functions since the graph G is 
inhomogeneous. But it is not hard to see by the F K G  inequality that for 
any p either O " ( p ) = 0  for all x e G  or 0 " ( p ) > 0  for all x ~ G .  It can be 
shown using the same argument presented in the next section that 0"(p) is 
continuous in [0,1] for any x e G .  

2. PROOF OF THEOREM 

Define 

Y,, = {),cOB,,: o~--, y in B,,} 

Denote by I Y,,[ the number  of sites in Y,. We have the following result. 

L e m m a  1. lim . . . . .  I Y,,I = ~ a.s. on the event o ~ ~ .  

The proof  of the lemma is not difficult. If  there exists a subsequence 
{ Y,,k} such that [ Y,,~ I stays bounded, then the probability that none of the 
sites in Y,,k is connected to co is bounded away from zero, hence eventually 
[Y,,, 1=0,  a contradiction to o ~ co. For a detailed argument see p. 122 of 
ref. 1. 

Lemma 2. I f 0 (p )  > 0 ,  then there exists 5 > 0  such that 0 ( p _ f i ) > 0 .  

Proof." For  any number  A e(0,  0(p)), choose M such that M >  1/A. 
From Lemma I, Pp([ Y,[ > M)--* O(p) as 17--* oo. So one can choose an 
integer N = N(M, A, p) such that Pr( [ YA, [ > M) > A. Now, Pp([ Y^,[ > M) 
is a continuous function o f p  since the event lily[ > M depends only on the 
status of the finitely many sites in BAr. So one can choose cf > 0 so that 

PI,-,~([ Y,v[ > M) > A ( i )  
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Now fix the site density to be p - 3. For each x ~ Y,v, define 

YN(x)={y~x+OBN:X~--~ y inx+BN} 

For different x and y of YN, ]YN(X)[ and [ Yx(Y)] are i.i.d random variables 
having the same distribution a s  [YN]. So we have defined a Ga l ton-Watson  
process which is supercritical since, by (1), E IY,vl >~EIYN] Ilrxl>M>~ 
MA > 1. So the probability that the above defined Gal ton-Watson  process 
survives is positive. The proof  is then completed by noticing that the per- 
colation process with site density p - ~ dominates the Gal ton-Watson  pro- 
cess in the sense that if the Gal ton-Watson  process survives, then o ~-~ or. 

An immediate consequence of Lemma 2 is that O(p,.)=O, since if 
0(p,.) > 0, then O(p,.-6)> 0 for some 6 > 0, a contradiction to the defini- 
tion of p,.. 

Proof  of  the  Theorem.  As explained in the introduction, we only 
need to prove that O(p) is continuous from the left. If O(p)=0, then O(p) 
is clearly continuous from the left at p. Assume O(p) > 0. By Lemma 2 there 
exists 6 > 0 such that O(p - 6) > 0. For any e > 0 choose an integer M large 
enough such that ( 1 - O ( p - ~ ) ) ' ~ l  <e.  This inequality is still valid if ~5 is 
replaced by 6' with 0 <~'~< 6 since O(p) is a nondecreasing function. As in 
the proof  of Lemma 2, for the above chosen M, there exists a positive 
integer N such that Pt,( [ Y,v [ > M) > 0(p) - e. By continuity of Pr( [ Y,v ] > M) 
as a function of p, there exists 6o > 0 such that P , _  a,( [ Y,, [ > M) > 0(p ) - 
when 6' < 6o. Hence we have that when 6' < min(6. ,  6), 

O(p -~ ' )  

=Pr a,(o~--~ov) 

>/Pp -,~'(t Y,vJ > M, and there exists x ~ YN such that x ~ ~ in x + G) 

>~PI, a'([YN[>M)[1--(1--O(P--~')] m by independence 

> (O(p) - e ) ( 1  - e )  >~ O(p) -2e  

So O(p)- O(p-~') <2e. This completes the proof, since e is arbitrary. 
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